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Least-Squares Refinement with Subsidiary Conditions 
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A method of least-squares refinement is described in which the subsidiary conditions are treated 
like observational equations. The advantages of the method are its generality, its adaptability to 
machine computing, and the possibility of relaxing the subsidiary conditions to any desired degree 
by appropriate changes in the weighting. In suitable cases the method extends the range for which 
least-squares refinements converge to the correct solution. 

I t  is useful at times to refine positional parameters 
of atoms in such a way that  these atoms by necessity 
represent a molecule of known and specified geometry. 
In the special case that  this molecule is rigid, one 
may define the positions of all atoms in a molecular 
coordinate system and consider the parameters de- 
scribing the orientation and translation of the molec- 
ular coordinate system relative to the crystallographic 
system as parameters to be refined (e.g. Sparks, 1958). 
A molecule that  consists of several linked rigid por- 
tions may be treated by an extension of the same 
method. However, with increasing flexibility of the 
molecules considered the procedure becomes cumber- 
some. 

A more general method of imposing geometrical 
conditions on the positional parameters of the atoms 
is to subject them to subsidiary conditions in the 
least-squares treatment by the classical and powerful 
method of Lagrange multipliers (e.g. Hughes, 1941). 
The equations that  express the desired conditions 
(e.g. specifying that  certain interatomic distances and 
bonding angles have preassigned values) are mul- 
tiplied by undetermined factors - -  the Lagrange 
multipliers - -  and the results added to the weighted 
sum of the squared residuals to be minimized. Differ- 
entiation with respect to the parameters results in 
equations for the parameter shifts as functions of the 
Lagrange multipliers. These equations and the sub- 
sidiary conditions may then be solved for the para- 
meter shifts and the Lagrange multipliers. While 
elegant, this method is often cumbersome in numerical 
applications and in particular proved to be unsuitable 
to machine computations for the particular application 
of interest here. 

The idea of treating the desired subsidiary con- 
ditions exactly like observational equations presented 
itself. The squares of residuals resulting from the 
subsidiary conditions suitably weighted are simply 
added to the sum of the weighted squares of the 
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residuals coming from the usual observational equa- 
tions. 

This appears to be an entirely general method of 
introducing conditions into the least-squares proce- 
dure, and in particular when refining positional 
parameters. In the limit that  the residuals originating 
from the subsidiary conditions are supplied with 
infinite weights these conditions are satisfied precisely. 
I t  is, however, possible to relax the conditions to any 
desired degree by suitably decreasing the weights of 
the corresponding residuals. In this respect the present 
method is more general than the method of Lagrange 
multipliers. I t  has the same advantage over the 
method involving molecular coordinates described 
earlier, as well as the advantage of being a general 
method, not requiring the setting up of new equations 
for each new kind of molecule. I t  works as well for 
rigid as for highly flexible molecules. 

The usual metric conditions imposed on atomic 
parameters to insure that  they represent a given 
molecule are (1) that  certain bonded atoms are at 
preassigned distances from each other, (2) that  certain 
atom triplets define preassigned bonding angles, and 
(3) that  certain atoms are coplanar. I t  turns out that  
the mathematics is most straightforward if conditions 
of the type (2) and (3) are expressed as distance 
requirements also. Thus, the condition for a given 
bonding angle is best restated in terms of the three 
distances involved. The coplanarity of a set of atoms 
may be enforced by specifying non-bonded as well 
as bonded distances between the atoms in this plane. 
This is not the most effective way to achieve co- 
planarity because small deviations from coplanarity 
affect interatomic distances only in the second order. 
However, this does not appear to be a disadvantage, 
because the imposition of too stringent requirements 
may generally be unwise. For some molecules it may 
be convenient to impose conditions of coplanarity by 
specifying the distances of these atoms from an atom 
outside the plane (e.g. in ferrocene). 

The conditional expressions resulting from distance 
requirements are as follows: Let the starting para- 
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meters of the N atoms considered be x °, i =  1 . . . N ,  
j = l ,  2, 3. Here and later the indices i and k will 
always be atom numbers, while j and t refer to the 
crystallographic axes (aj) and run from 1 to 3. The 
least-squares iterations to be discussed lead to shifts 
A ~ and new parameters x~j 

xi~=x°j+ A~  . (1) 

Certain distances rt~ are to be prescribed for select 
pairs of atoms i and k, and the parameters x~ to be 
adjusted so that  the actual distances between the 
atoms give a 'best' fit with weights w~ to the pre- 
scribed distances. The sum of weighted squares of 
residuals related to this requirement is then 

i ,  k ],  t 

where git = a~. at 

represents the metric tensor in the crystallographic 
system used, and the sum over the index pair (i, k) 
has to be taken over all pairs for which distances r~z 
have been specified. Using (1), differentiating R1 with 
respect to the parameters x~¢, and neglecting all 
powers of the shifts d~j higher than the first the 
following expressions result: 

( ½ ) ( ~R~/ ~x,:) = _,~ w,~ [ (r,~/r°,) g,z¢ fl_.," g,~t ( 3 ** -- dzt)] 
~(i) t 

o - t-[1--(r~/r°~)].~g~t(/ iu--/ l~t)+g~z¢(ri~--r~)] . (3) 
t 

For any given value of i the sum over k(i) is to be 
taken over all k's for which a distance has been 
specified that  relates the two atoms i and k. The 
quantity r°~ is the distance between the initial loca- 
tions x°i and x~,i, 

:~ = [ 2  e.(x°~- :~) (:~-  :~)] ~ 
~, t 

while g ~  is defined by 

= --Xkt)]/rik[=al COS (a:, r , - r ~ ) ]  . 
t 

The weighted sum of squared residuals that  is 
usually minimized in structure factor least-squares 
(S~.LS) refinements is 

R~ = Z w ~  ( F o -  F~)~ 

where the sum is taken over all reflections. Expansion 
in terms of the parameter shifts yields the following 
result* for the partial derivatives: 

* The second term on the right side of (4) and similar 
terms involving mixed derivatives with respect to the tem- 
perature parameters and the scale factor are usually omitted 
from least-squares refinements, probably because they are 
lost in the customary derivation of the normal equations 
(e.g. Lipson & Coehran, 1953), which strictly applies to linear 
observational equations only. The existence of these terms 
has been pointed out by Cruickshank (1952). There appears 
to be no reason why they should not be included in least. 
squares refinements, particularly if electronic computers are 
used. 

(½) ( ~Rg/ ~xi~) 

=. ,F,w~ 2 
~,t ~xk~ Bx~j 

° ol 
~x~jJ " 

~2Fc 
- -  A kt - .X ( F o -  F~) 

t ~xi: ~x~t 
A~t 

(4) 

In a least-squares refinement with specified distance 
requirements the linear equations to be solved for the 
shifts are obtained by setting the sums of (3) and (4) 
equal to zero, 

~Rll  ~xij + ~R21 ~xi~ = 0 .  (5) 

This procedure will be referred to as the conditional 
S F L S  method. As implied earlier the degree to which 
the distance conditions are satisfied depends on the 
ratio w~/wF of the weighting functions used. If the 
relative emphasis on the observational equations 
and the subsidiary conditions is to be commensurate 
with approximating the observed structure factors 
to within about 1 electron and the specified distances 
to within about 0.1 _~, the w~ should be of the order 
of (1/0"1)9'= 100 times as large as the WE. 

There exists the following problem concerning 
equation (5). In most S F L S  refinements of recent 
years it is not the simultaneous linear equations 
~R2/~x~j=O (and the analogous equations resulting 
from setting equal to zero the derivatives of R2 with 
respect to temperature parameters and scale factor) 
that  are solved, but rather an approximation of these 
equations called the block diagonal approximation. 
In it all elements of the coefficient matrix of the shifts 
of positional and temperature parameters relating to 
different atoms are set equal to zero, because they 
usually are expected to be negligibly small. (The 
approximation is sometimes carried further, e.g. by 
setting to zero all but diagonal elements and those 
non-diagonal elements that  are not negligible because 
the crystallographic axes they refer to do not enclose 
a right angle.) In the conditional S F L S  procedure 
the contributions from (3) result in large matrix 
elements outside the diagonal blocks for the positional 
parameters of all atom pairs i, k for which distances 
r~ have been specified. Equation (5) is thus appro- 
priate only for the so-called full matrix approach to 
least-squares refinements. 

When the block diagonal approach is used the 
following variant has proved of advantage. (As 
discussed later it may be of advantage even for the 
full matrix approach.) Each unconditional S F L S  cycle 
is followed by one or several cycles that  readjust the 
positional parameters so as to give a 'best' fit to the 
parameters resulting from the S F L S  cycle as well as 
to the prescribed distances. The sum Re of weighted 
squares of structure factor residuals is thus replaced 
by a sum Ra of weighted squares of distances to the 
positions resulting from minimizing R2 uncondition- 
ally. 

In more detail, let pij be the j th  component of the 
positional parameter of the ith atom, as determined 
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from a S F L S  cycle, and let wi be the weight at tached 
to the squared distance between the position of 
atom i described by pij and tha t  described by the 
parameter  xij to be adjusted. The weighted sum of 
squared residuals to be added to R1 is thus 

R S  = , ~  Wt  . ,~  g i t  ( x i j  - -  p iJ )  (Xft  - -  p i t )  • (6) 
i ], t 

The derivative of/~s is given by  

( ½ ) ~Rs/ ~xij -- wt _~, gjt ( xi~ - p ,  ) = w~ _~, gj~ ( /| it + xa° _ pit) 
t i (7) 

and the simultaneous linear equations to be solved 
for the shifts are 

~R1/ ~x~j + ~Rs/ ~xij = 0 .  (8) 

This procedure will be called the f i t t ing  of  a molecule 
to given posit ions p,¢. 

A FORTRAN program for an IBM 7090 digital 
computer has been wri t ten by R .A.  Sparks and 
arranged so tha t  refinement cycles with a block 
diagonal S F L S  program (7090 program of Gantzel, 
Sparks & Trueblood, 1961) are automatically followed 
by  one or more cycles tha t  fit a prescribed molecule 
to the resulting parameters P*3". This procedure 
proved very useful in the initial refinement stages 
of the crystal structure of sinigrin (C10H16OpNSpK. 
H20) (Waser & Watson, 1963). This substance 
crystallizes in the acentric space group P21212x 
with one formula in the asymmetric  unit. While 
S F L S  refinement without subsidiary conditions 
failed to converge, convergence was achieved by 
the above method. The following details are pro- 
vided to give a general idea of the workings of 
the method and the choice of weights. Siuigrin is a 
salt and neither the position of the K+ ion nor tha t  
of the extra H~.O molecule were restricted by any 
distance requirements. The distance conditions used 
affected, however, all other atoms (excepting hydro- 
gens) of the anion I of the salt and included specifica- 
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tions for bonding distances and angles as well as for 
rigid groups such as the sulfate group and the glucose 
ring, and for the group of five atoms tha t  are held 
in a plane by  the C- -N double bond. Init ially the 
weights for the distance requirements were set at  100, 
except tha t  the distances holding the five atoms just  
discussed close to a plane were given weights 10. 
The weights chosen for the positional requirements 

were 50 for the sulfur atoms and 10 (and in early 
cycles 1) for all but  two of the lighter atoms. Because 
the positions of the two double bonded carbon atoms 
of the propylene group were felt to be less certain 
they  were given the weights 0.01 thus minimizing 
any pull on the remainder of the anion. In  later 
stages the weights of all lighter atoms were set 
uniformly at  10, and the distance requirements were 
gradually relaxed by  decreasing their number and 
weights, the lat ter  eventually by a factor 10. During 
the course of refinements the shifts of the two double 
bonded propylene carbon atoms were larger than  1 J~ 
and many  other atoms shifted by several tenths of 
one J~. This is i l lustrated by  Fig. 1 in which the 
positions of the 22 atoms of the anion I are shown 
for an early set of parameters (with the customary 
R factor about 0.35) and for the cycle after which 
all distance requirements were relinquished (R about 
0.15). 
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Fig. 1. (a) Top view and (b) side view of anion I at  early 
(empty  circles) and late ref inement  stages (filled and  con- 
nec ted  circles). The a r rangement  of the  a toms in the  top  
view is similar to t ha t  in the  chemical formula  I .  

I t  was found tha t  after each S F L S  cycle the 
adjustment  of atomic positions demanded by  the 
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weighted positional and distance requirements usually 
took several iterations of equation (8) until all shifts 
had become negligibly small. I t  thus appears that  
even when full matrix S F L S  methods are employed 
it may be preferable to use the procedure of fitting 
a molecule to the parameters resulting from un- 
conditional S F L S  cycles rather than the conditional 
S F L S  method of incorporating distance conditions 
into the S F L S  matrix. Another reason for such a 
preference is that  the results of unconditional S F L S  
refinement cycles are, of course, always of interest, 
and to obtain them it is necessary to solve the equa- 
tions for the shifts twice, once without and once with 
the terms originating from (3). 

The general choice of weights depends on the details 
of the problem on hand. I t  should also be noted that  
the degree to which the distance requirements are 
satisfied does not depend on the ratio of the weights 
w~/w~ alone, but also on the degree to which the 
positional requirements are compatible with the 
distance requirements. The poorer the positional 
parameters, the larger are the relative weights w~z 
needed to achieve a molecule of reasonable geometry. 
Positions of heavy atoms should be given considerable 
weight; unless these positions are close to being 
correct, refinement is liable to fail in any case. Suspect 
positions should be given little weight lest they pull 
on the remainder of the molecule rather than being 
pulled. 

As already stated, use of weighted distance require- 
ments strengthens the least-squares refinement method 
in suitable cases so that  the trial parameters for which 
this refinement begins to converge may be further 
removed from their correct values than when such 
requirements are not made. Such distance require- 
merits will in general be relaxed as the refinement 
proceeds. In special cases, however, it may be useful 
to keep at least some of the distance requirements 
even in the last refinement stages. For example, 
the quantity and/or quality of the data available may 
not warrant refinement of all individual atomic 
parameters. In the presence of heavy atoms as in 
some organometallie compounds it may be appro- 
priate to refine the positions of molecular groupings 
of atoms rather than of individual atoms. I t  may also 
be useful to refine positions of hydrogen atoms in 
organic molecules subject to suitable weighted dis- 
tance requirements. 

The method of fitting a molecule to given positions 
is also useful for finding 'best' atomic parameters 
from the results of preliminary Fourier work. I t  may 
be applied when Fourier peaks are not resolved and 

even when some Fourier peaks are missing, provided 
that  enough distances can be specified to define all 
atomic positions sought. 

The method may further be modified to apply to 
two-dimensional Fourier syntheses. For purposes of 
discussion we assume a projection along the crystallo- 
graphic axis a3. The positional requirements leading 
to R3 must then be modified to include only terms 
affecting the xl and x2 parameters, while the distance 
requirements leading to R1 are, of course, kept three- 
dimensional. Enough distances must be specified to 
define all relative x8 parameters. To keep the molecule 
to be fitted from shifting arbitrarily along as, the 
xs parameter of one atom must be given a fixed value, 
like 0. Convergence to a solution may be slow, unless 

0 the starting parameters x~s are given roughly correct 
relative values. This also serves to remove another 
source of ill definition that  exists when ax and as 
are perpendicular to as (or nearly so), in which case 
at least two solutions exist, related by a mirror plane 
(or near mirror plane) perpendicular to as. (Additional 
solutions exist if mirroring of parts of the molecule 
is compatible with the set of preassigned distances.) 

We have found that  when the fitting of a molecule 
to prescribed positions requires large shifts it may be 
necessary for the convergence of the iterations to scale 
the shifts so that  the largest of them does not exceed 
a certain prescribed value. In our experience parameter 
shifts that  correspond to more than about 0.1 ~ are 
detrimental to rapid convergence. 
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